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Chloride 'switch' turns on membrane formation
Fraudulent Science_ What’s Retracted, -What’s Not 

Honeybees pick up pesticides from non-crop plants
Neurotoxicity of nanoscale materials
NanoPlastic

How fasting helps fight fatty liver disease
Chloride 'switch' turns on membrane formation

Chloride plays a key role in the formation of the basement membrane, a suprastructure on the outside of cells that undergirds and guides the function of most of the tissues of the body.-- In particular, chloride signals the assembly of collagen IV "smart scaffolds," a critical step in basement membrane formation, researchers at Vanderbilt University Medical Center (VUMC) reported in the Journal of Cell Biology-"This is a fundamental discovery," said senior author Billy Hudson, Ph.D., Elliott V. Newman Professor of Medicine and director of the Center for Matrix Biology. It's the first signaling function identified for chloride, an electrolyte that helps maintain proper blood volume, blood pressure and acid/base balance.--Chloride's newly discovered role in establishing a "microenvironment" on the outside of cells highlights the importance of collagen IV in the evolution of animal tissues, Hudson said. It also suggests a potential way to treat or prevent diseases that affect the basement membrane.-Nineteen scientists from several departments and research centers at VUMC and Vanderbilt University contributed to the study, which began nine years ago. Four co-authors were participants in the "Aspirnaut" summer research program for high school and college students from disadvantaged backgrounds co-founded by Hudson and his wife, Julie Hudson, M.D.--Collagen IV scaffolds are found throughout the animal kingdom. They provide tensile strength to epithelial tissues, tether diverse macromolecules and growth factors, and bind integrins (cell surface receptors). -In this respect, these extracellular scaffolds are a "molecular GPS," Hudson said, "laden with information about how cells grow and communicate with each other." Yet, even cell-matrix communication systems can be "blown up." That's what diabetes does to the kidney and cancer to tissues, he said. It disrupts communication. During the past 45 years, Hudson and his colleagues have helped define the structure and function of the collagen IV scaffolds. The building-block molecule is a triple helix, three strands twisted together like rope. One end of each ropelike chain is capped with a globule of amino acid molecules called the NC1 "domain." Scaffold assembly is initiated when the domains of two triple-helical molecules bind together. Christopher Cummings, Ph.D., Vadim Pedchenko, Ph.D., and Kyle Brown, Ph.D., the first three authors of the paper, led the current study, which began when chloride was found on the surface of a crystallized domain. That got the researchers wondering: might chloride regulate the assembly of collagen IV chains into scaffolds? Through a series of experiments, they showed that was the case: chloride is absolutely required for collagen IV assembly on the outside of cells. When chloride binds to NC1 domains, it "throws the switch," by inducing a conformational change, enabling them to fit together like puzzle pieces--Since these binding motifs are found throughout the animal kingdom, "we infer that the switch is a fundamental mechanism of collagen IV scaffold assembly," the researchers concluded.

The researchers also showed that scaffold assembly was disrupted in fruit flies with a mutation in the gene for the NC1 domain. Similar mutations in humans have been associated with stroke and with Alport disease, a genetic disease that causes hearing loss and lung and kidney damage. In an editorial accompanying the paper, Hudson said the discovery is "just a small window into this complex extracellular machinery." But one day, he added, it may be possible to treat certain basement membrane disorders by altering the chloride switch.- Story Source-The above post is reprinted from materials provided by Vanderbilt University Medical Center. -Journal Reference-Christopher F. Cummings, Vadim Pedchenko, Kyle L. Brown, Selene Colon, Mohamed Rafi, Celestial Jones-Paris, Elena Pokydeshava, Min Liu, Jose C. Pastor-Pareja, Cody Stothers, Isi A. Ero-Tolliver, A. Scott McCall, Roberto Vanacore, Gautam Bhave, Samuel Santoro, Timothy S. Blackwell, Roy Zent, Ambra Pozzi, and Billy G. Hudson. Extracellular chloride signals collagen IV network assembly during basement membrane formation. Journal of Cell Biology, May 2016 DOI: 10.1083/jcb.201510065 --Vanderbilt University Medical Center. "Chloride 'switch' turns on membrane formation." ScienceDaily. ScienceDaily, 23 May 2016. <www.sciencedaily.com/releases/2016/05/160523160630.htm>.
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Fraudulent Science_What’s Retracted,_What’s Not 

  Critics who deplore the commercialization of medical research have raised concerns about scientific fraud and misconduct that are undermining the integrity of the medical-scientific literature, and the practice of “evidence-based medicine”— which relies on published journal reports. Recent analyses of retractions of published peer-reviewed journal reports provide supportive evidence for those critics.-Retractions from journals are not routine occurrences–journal editors are extremely reluctant to retract articles, a tacit acknowledgment of their own gate-keeping failure–and fear of reprisals from the sponsors of those retracted trial reports. Many journals don’t even have retraction policies, and the ones that do publish critical notices of retraction long after the original paper appeared—without providing explicit information as to why they are being retracted.-- Judging by analyses showing that the number of retractions during the past ten years has skyrocketed, it is reasonable to conclude that the self-regulating peer review system suffers from serious underlying defects  Indeed, the frequency of retractions prompted Ivan Oransky and Ivan Marcus to establish a blog (2010) called  “Retraction Watch.”  Another website that tracks the PubMed database—by Neil Saunders, an Australian scientist—found that since 1977, the number of retractions increased by a factor of 30, while publications increased fourfold.  An article in the Science section of The New York Times, “A Sharp Rise in Retractions Calls for Reform” (April 16, 2012) [1] highlighted the concerns raised by two science journal editors–Dr. Ferric Fang, editor in chief of Infection and Immunity Journal, and Dr. Arturo Casadevall, editor in chief of mBio, who are spearheading a call for reform after their search for retracted reports in 17 journals found 740 retractions between 2001 and 2009. [2]

The frequency of retraction varied among the journals: The  NEJM, Cell, Science and Nature had the highest number of retractions between 2001 and 2010.
Drs. Fang and Casadevall reached the conclusion that not only were retractions rising at an alarming rate, but that retractions were just a manifestation of a much more profound problem — “a symptom of a dysfunctional scientific climate.”  They presented their concerns before National Academies of Sciences committee on science, technology and the law in March.  They describe some of the corrosive pressures that academic scientists face since the culture in academia was transformed into a competitive, secretive business environment where quantity is rewarded—not quality. “What people do is they count papers, and they look at the prestige of the journal in which the research is published, and they see how many grant dollars scientists have, and if they don’t have funding, they don’t get promoted…It’s not about the quality of the research.”Medical journals have similarly come to be evaluated by their quantifiable “impact factor”– much like the popular media ratings. The wider their readership, the greater the number of hits (citations to an article in a journal) the greater its influence, and the higher the journal’s “impact factor.” Journals with high impact have tremendous appeal and commercial value for pharmaceutical companies.  Thus, it should not come as a surprise that dubious research reports are more likely to be submitted for publication to “high impact” journals. Even if a report is retracted, its impact survives through numerous subsequent articles that continue to cite it as authoritative. 

Other Retraction Analyses:

In 2006, a letter to the editor, “Top Journals’ Top Retraction Rates,” Shi V. Liu noted that top journals brag about their “high” impact as a commercial strategy to boost circulation and increase their attractiveness to authors. However, the publication of these( later retracted) papers published in high profile journals, “may indicate a real lack of some true scientific criteria for systematically and adequately evaluating manuscripts by these top journals. In fact, as some readers pointed out, some of these top journals base their selection on sensation rather than on science.”  Scientific Ethics[3] In October 2011, the journal Nature [4] reported that published retractions had increased tenfold over the past decade, while the number of published papers had increased by just 44%. An article by Dr. Grant Steen in the Journal of Medical Ethics (2011) [5]  “How Many Patients Are Put at Risk by Flawed Research?” found that retracted papers were cited over 5,000 times, with 93% of citations being research related. This suggests that misinformation promulgated in retracted papers can influence subsequent research. Dr. Steen analyzed 180 retracted primary studies: 70 of the studies were retracted for fraud, of which 41% were clinical trials involving human subjects ( Steen refers to them as “freshly derived human material”).  Over 28 000 subjects had been enrolled, and 9,189 patients were treated. Subsequently, over 400,000 subjects were enrolled in 851 secondary studies which cited a retracted paper—in these secondary studies, 70,501 patients were treated.   These estimates, he notes are conservative because only patients enrolled in published clinical studies were counted
. It is worth noting that the results of most negative clinical trials are never published—neither are they disclosed anywhere, except in sponsors’ confidential files and FDA marketing submissions. Those confidential files are pried open ONLY in the course of litigation–until then, commercial stakeholders are shielded by a solid curtain of confidentiality. When post marketing reports link a drug, a medical device or vaccine to serious harm, they are vigorously dismissed as anecdotal, claiming–“there is no scientific evidence” from clinical trials.  The evidence and the bodies have been buried without a trace False, misleading, and outright fraudulent research reports published in medical journals cause enormous harm: they divert scientists and resources into unproductive lines of investigation, and worst of all, they misinform clinicians about the safety and efficacy of treatments, encouraging them to prescribe inappropriate–even potentially lethal—medical treatments for patients.  In other words, false claims in medical journals can be a matter of life and death. Indeed, more than 200,000 Americans are killed every year due to adverse effects of prescription drugs that had not been disclosed in journal reports.
In his recently published book, Pharmageddon (2012) Dr. David Healy argues that the presumed integrity of medical journals is the cornerstone for evidence-based medicine, and medical practice guidelines are formulated on the basis of published journal findings–which are invoked as scientific evidence. And, he argues, that those “evidence-based” guidelines have supplanted physicians’ professional judgment and reliance on experience and close observation of individual patients and their needs.
In an editorial in Infection and Immunity, [2] Drs. Fang and Casadevall state: “without access to raw data, it is unrealistic to expect that even careful and highly motivated reviewers can detect all instances of falsification or fabrication.”   But these good doctors fail to point out WHY they don’t have access to the data, or WHO prevents access to the raw data? Neither do they suggest the obvious, that without access to the data, the peer review exercise itself lacks authenticity.

Peer review is clearly not a reliable gate keeping mechanism for insuring the integrity of scientific journals–a major flaw is that reviewers do not actually review the raw data because it is withheld by commercial sponsors. And the influence those sponsors exert on the science and practice of medicine, is ubiquitous. The Alliance for Human Research Protection calls upon all medical journals to adopt a publication policy to deter the submission of reports that misrepresent findings, withhold negative data, or make false, unsubstantiated claims.  This is in line with the publication policy adopted by NATURE publications, which have a uniform publication standard 
--- “A condition of publication in a Nature journal is that authors are required to make materials, data and associated protocols promptly available to others without undue qualifications…Supporting data must be made available to editors and peer-reviewers at the time of submission for the purposes of evaluating the manuscript.”
Specifically, for the publication of clinical trials, the Alliance for Human Research Protection recommends that all medical journals require submission of the sponsor’s formal Clinical Study Report which contains the most complete materials, data and associated protocols required by regulatory authorities of the European Union, Japan and the United States (FDA).  Inaccuracies, deletions, or alterations in these reports can have regulatory and legal sanctions. 
  Vera Sharav
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Below, an article by Martha Rosenberg in CounterPunch, cites several rogue journal authors who were sentenced to prison, yet their fraudulent reports continue to pollute the literature.  She asks:  “If going to prison for research fraud is not enough reason for retraction, what is?”

And the New York Times article by Carl Zimmer. 
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Big Pharma’s Ghostwriters:Why Are These Fraudulent Papers Unretracted?
by MARTHA ROSENBERG

According to Science Times[1], the Tuesday science section in the New York Times, scientific retractions are on the rise because of a “dysfunctional scientific climate” that has created a “winner-take-all game with perverse incentives that lead scientists to cut corners and, in some cases, commit acts of misconduct.”-But elsewhere, audacious, falsified research stands unretracted–including the work of authors who actually went to prison for fraud! Richard Borison, MD, former psychiatry chief at the Augusta Veterans Affairs medical center and Medical College of Georgia, was sentenced to 15 years in prison for a $10 million clinical trial fraud[2] but his 1996 US Seroquel® Study Group research is unretracted.[3] In fact, it is cited in 173 works and medical textbooks, misleading future medical professionals.[4] Scott Reuben, MD, the “Bernie Madoff” of medicine who published research on clinical trials that never existed, was sentenced to six months in prison in 2010.[5]
But his “research” on popular pain killers like Celebrex and Lyrica is unretracted.[6] If going to prison for research fraud is not enough reason for retraction, what is Wayne MacFadden, MD, resigned as US medical director for Seroquel in 2006, after sexual affairs with two coworker women researchers surfaced[7], but the related work is unretracted and was even part of Seroquel’s FDA approval package for bipolar disorder.[8] More than 50 ghostwritten papers about hormone therapy (HT) written by Pfizer’s marketing firm, Designwrite, ran in medical journals, according to unsealed court documents on the University of California–San Francisco’s Drug Industry Document Archive.[9] Though the papers claimed no link between HT and breast cancer and false cardiac and cognitive benefits and were ghostwritten by marketing professionals not doctors, none has been retracted. Pfizer/Parke-Davis placed 13 ghostwritten articles[10] in medical journals promoting Neurontin for offlabel uses, including a supplement to the Cleveland Clinic[11] but only Cochrane Database Systematic Reviews and Protocols has retracted the specious articles.[12] Nor is the phony science just a product of “Big Pharma.” In 2008, JAMA was forced to print a correction stating that authors of an article arguing for a higher recommended dietary allowance of protein were, in fact, industry operatives. [13] Sharon L. Miller was “formerly employed by the National Cattlemen’s Beef Association,” and author Robert R. Wolfe, PhD, received money from the Egg Nutrition Center, the National Dairy Council, the National Pork Board, and the Beef Checkoff through the National Cattlemen’s Beef Association, said the clarification. Miller’s email address, in fact was smiller@beef.org, which should might have been the JAMA editors’ first tip-off.[14] The article has also not been retracted.- Martha Rosenberg’s is an investigative health reporter. Her first book,  Born With A Junk Food Deficiency: How Flaks, Quacks and Hacks Pimp The Public Health, has just been released by Prometheus books. Notes.
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Honeybees pick up pesticides from non-crop plants
by Brooks Hays
West Lafayette, Ind. (UPI) May 31, 2016
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Honeybees acquire pesticides as they collect pollen from non-crop plants, a new study finds. Even honeybees that live in agricultural regions get most of their pollen from non-crop plants. Avoiding commercial crops isn't sparing bees from potentially harmful pesticides.--Researchers at Purdue University tracked the pollen sources and pesticide levels of honeybees over the course of 16 weeks. Samples taken from their hives revealed pollen foraged from 30 plant families. The samples contained residues of pesticides from nine chemical classes, including neonicotinoids -- a pesticide implicated in colony collapse disorder.-"Although crop pollen was only a minor part of what they collected, bees in our study were exposed to a far wider range of chemicals than we expected," Christian Krupke, professor of entomology, said in a news release. "The sheer numbers of pesticides we found in pollen samples were astonishing."-"Agricultural chemicals are only part of the problem," Krupke added. "Homeowners and urban landscapes are big contributors, even when hives are directly adjacent to crop fields."-In addition to neonicotinoids, researchers found significant traces of pyrethroids, an insecticide commonly used by homeowners to battle wasps, mosquitos and other nuisance pests.--Increasingly, studies point to a combination of disease, pesticides and habitat fragmentation as the reason for the continued decline in honeybee numbers.-The latest research, published this week in the Nature Communications, suggests pesticide exposure is a more widespread and varied problem than originally thought.--"These findings really illustrate how honeybees are chronically exposed to numerous pesticides throughout the season, making pesticides an important long-term stress factor for bees," researcher Elizabeth Long said.  
**********************************************************************

Titanium dioxide NPs
Zinc oxide NPs
Manganese oxide NPs
Silver NPs
Iron oxide (FeO, Fe2O3, Fe3O4) NPs
Copper and copper oxide NPs
Aluminum oxide (alumina, Al2O3) NPs
Silicon dioxide (silica) NPs
Carbon-based nanomaterials

Neurotoxicity of nanoscale materials

Alokita Karmakar a, Qinli Zhang b, Yongbin Zhang a,*a
[image: image1.png]‘*‘Fcubun Nlnolube
=2

Nanodisk

' 4 Inflammation

Nanorod

Quantum Dot
' Endothelial call <=  Smooth muscle cell <=  Platelet




Nanotechnology Core Facility, Office of Scientific Coordination, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA b School of Public Health, Shanxi Medical University, 56 XinJian South Road, Taiyuan 030001, China article info Article history: Received 30 September 2013 Accepted 28 December 2013 Available online 4 February 2014 Keywords: Bloodebrain barrier Nanomaterial Neurotoxicity Oxidative stress

Abstract

Nanotechnology has been applied in consumer products and commercial applications, showing a significant impact on almost all industries and all areas of society. Significant evidence indicates that manufactured nanomaterials and combustion-derived nanomaterials elicit toxicity in humans exposed to these nanomaterials. The interaction of the engineered nanomaterials with the nervous system has received much attention in the nanotoxicology field. In this review, the biological effects of metal, metal oxide, and carbon-based nanomaterials on the nervous system are discussed from both in vitro and in vivo studies. The translocation of the nanoparticles through the bloodbrain barrier or nose to brain via the olfactory bulb route, oxidative stress, and inflammatory mechanisms of nanomaterials are also reviewed.[image: image2.jpg]DISEASES ASSOCIATED TO NANOPARTICLE EXPOSURE
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Introduction

People working in certain industries, for example, automobile, aerospace, various activities such as combustion, welding, and biomedical applications electronics and communications, and chemical and paint industries are at high risk of being exposed to a large amount of NPs [1e10]. As NPs persist in the environment, people living in those environments are at higher risk of NP exposure. Nanotechnology involves creating and applying engineered materials at the nanoscale to take advantage of these specific properties. Humans have been exposed to many nanoparticles (NPs) originating from

 Copper, zinc, iron, cerium, silver, gold, iron, manganese, titanium, aluminum, silica, and other carbon-based nanomaterials are some of the NPs to which humans are exposed significantly and may cause several health-related problems including neurotoxicity.--As a rapidly growing emerging science, nanotechnology has shown a significant impact on almost all industries and all areas of society. Nanomaterials, defined by the National Nanotechnology Initiative, have at least one dimension in the range of 1-100 nm. Due to their small size, the properties of nanomaterials differ from those of their bulk materials, showing unique chemical, physical, optical, and electrical properties. 

Journal of food and drug Analysis 

In recent years, a significant number of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, or Huntington's disease have been diagnosed and treated. The increased amount of environmental pollutants, including NPs
, may be responsible for increasing the number of these neurodegenerative diseases. The role of the bloodebrain barrier (BBB) is crucial in understanding NP toxicity in the brain. BBB separates blood from cerebrospinal fluid in the central nervous system (CNS). The BBB is an extended plasma membrane that contains tight junctions between the adjacent endothelial cells of the cerebral capillaries. The permeability properties of the BBB are of interest [1,11]. Unlike noncerebral capillaries, the cerebral endothelium does not have vesicles for macromolecular transport. Astrocytic end feet cover most (85%) of the cerebral capillary endothelial cells and they also contain a thick basement membrane [12]. The presence of such complex combinations of astrocytes, cerebral capillaries and basement membrane strongly supports the BBB function [11,13], even though establishing the clear cut roles of the basal lamina and/or astrocytic end feet in maintaining BBB permeability needs further study. When NPs reach the circulation, they may interfere with the function of the endothelial cell membrane. The effect of NPs on the cell membrane may be due to their direct toxicity, or indirectly, they may induce some cascade mechanism that disrupts the tight junctions in the BBB or alters the permeability of the membrane. It has been shown that intravenous, intraperitoneal, or intracerebral administration of Ag, Cu, or Al NPs (50-60 nm) reportedly disrupts the BBB, as indicated by staining with albumin-bound Evans blue [14]. Vesicular transport may also be stimulated by NPs in order to gain access to the CNS microenvironment to exert toxic effects in the CNS.
 The unique size and surface modification of NPs could deliver drugs or therapeutic agents to the brain in the development of nanomedicine. Additional research is, however, necessary in order to understand fully how NPs are translocated from the blood to the brain across the BBB. Nanomaterials could enter the human body by different routes including inhalation, dermal penetration, ingestion, and systemic administration, by which NPs may be accumulated in different tissues and organs including the brain [15,16]. It has been indicated that the olfactory nerve pathway may serve as a portal of entry for NPs into the CNS in humans who are environmentally or occupationally exposed to airborne NPs 
[17e19]. De Lorenzo [18] showed that when silver-coated colloidal gold particles (50 nm) were intranasally instilled in squirrel monkeys, the NPs anterogradely
 moved in the axons of the olfactory nerve to the olfactory bulbs. Olfactory epithelium that has been exposed to manganese, cadmium, nickel, and cobalt nanomaterials can translocate the nanomaterials to the brain via olfactory neurons [20e25]. Therefore, full understanding of the neurotoxicity of these nanomaterials may lead to the design of safer therapeutics and reduce the side effects of these nanomaterials in future. Having a greater surface area than their bulk counterparts, metal oxide NPs are used in various fields such as water treatment, medicine, cosmetics, and engineering, and provide superior performance in their applications. Unfortunately, almost no federal or state laws have specifically established regulations for the manufacture, transportation, use, sale, or disposal of nanomaterials [26]. For metal oxide NPs, their widespread application, small size, and large specific surface area endow them with high chemical reactivity and intrinsic toxicity, and their health effects in living creatures, especially on the nervous system, have been of concern. Metal oxide NPs are capable of translocating along the olfactory nerve pathway to the brain after intranasal instillation, and accumulating in the olfactory bulb, cortex, and cerebellum. Moreover, NP deposition in the brain can stimulate oxidative stress, inflammatory responses, and pathological changes
. These observations have provided evidence that metal oxide NPs can reach the brain and cause a certain degree of tissue damage. Metal oxide toxicity can also be induced by dissolved metal ions from the oxides. Brunner et al [27] studied the toxicity of NPs in human and rodent cell lines. They divided the tested NPs into soluble and insoluble NPs, and showed that the toxicity of soluble NPs was from the soluble metal ions released from NP dissolution
 prior to or after the NPs entered the neural cells. Considering the unique physicochemical properties, including small size effect, large specific surface area, and high biological surface reactivity, NPs might induce the neurotoxicological behavior and effects in organisms.

2. Neurotoxicity and mechanism of nanomaterials

2.1. Titanium dioxide NPs

Among several metal-based NPs, those originating from titanium have been used widely and in large quantities. Titanium dioxide (TiO2) is the most common compound of titanium that has found a variety of uses in our lives. TiO2 is a white, odorless, water-insoluble material that was believed to have low toxicity [28e31]. TiO2 is a relatively stable, nonflammable material that is found naturally in the form of various ores such as rutile, anatase, and brookite. TiO2 can also be extracted from an iron-containing mineral (FeTiO3) known as ilmenite [32e36]. TiO2 possesses certain physiochemical properties that make it useful for multiple applications. Corrosion resistance, biocompatibility, mechanical strength, whitening property, opacity, and photocatalytic, optical, and electrical activity are some of the attractive properties that have paved the way for large-scale applications of TiO2 [37]. The National Nanotechnology Initiative of America classifies nanoparticulate TiO2 particles as one of most widely manufactured NPs globally [38]. Industrially, 80% of TiO2, including its nanoparticulate form (globally), is used to produce paints, varnishes, plastic, and papers. Besides these applications, nanoparticulate TiO2 has major uses in developing various products such as cosmetics, foodstuffs, toothpaste, sun blocks
, printing ink, car materials, rubber, cleaning products, materials for industrial photocatalytic applications including solar cells, and catalysts for remediation of organic matter in wastewater [39]. Toxicity of nanosized TiO2 has yet to be completely understood despite its widespread uses. Recent toxicological studies have indicated harmful effects of TiO2 NPs in biological systems, which is of major concern [40]. It has been recently recognized that TiO2 may be carcinogenic to humans if inhaled [31]. As a result, it is of great importance to understand the risks and hazards including neurotoxicity associated with nanoparticulate TiO2 exposure and its dose-dependent response [41]. Irrespective of the different forms of TiO2, exposure route and particle size, it has been found that TiO2 NPs translocate to different parts of the brain [39,42e46]. The NPs accumulate in this organ and induce structural changes in the neuronal architecture 
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[39,43,45]. As mentioned previously, when NPs are inhaled, they can translocate to the CNS using the olfactory nerve as a means of entry. Several studies in mice have indicated that rutile NPs can translocate to the brain and accumulate throughout the organ, primarily in the hippocampus regions [39,43,45]. Such a neuronal translocation pathway of TiO2 NPs may be responsible for neurotoxicity. TiO2 NPs when instilled intratracheally in mice accumulate in the brain via the blood circulation and penetration of the BBB. This type of accumulation is responsible for inducing tissue damage [42]. Accumulation of nanoparticulate TiO2 in the brain induces release and metabolism of neurotransmitters such as norepinephrine

 and 5-hydroxytryptamine
 [39,43,45,46]. After intranasal exposure of TiO2 NPs, enhanced levels of the above-mentioned compounds were detected [43]. However, a decrease in response was detected when anatase TiO2 NPs were administered intragastrically [45]. Reduced levels of homovanillic acid, dopamine, 5hydroxyindole acetic acid, and 3,4-dihydroxyphenylacetic acid were detected when TiO2 NPs were administered intranasally or intragastrically [43,46]. Enhanced catalase and acetylcholinesterase activity was detected during intranasal instillation of rutile [39] and intragastric administration of anatase TiO2 NPs [46]. Acetylcholine, glutamic acid, soluble protein carbonyl, and nitric oxide content were also increased by such NP treatments. When anatase TiO2 NPs were intraperitoneally injected, increased nitric oxide but decreased acetylcholine and glutamic acid were detected [44]. Hu and colleagues [46] showed that the levels of sodium, potassium, magnesium, calcium, iron, and zinc in the brain were changed after nanoparticulate TiO2 exposure. In that study, the treated mice had impaired spatial recognition memory, which could be linked to the disturbed homeostasis of neurotransmitters, trace elements, and enzymes in the brain [46]. Proteomic analysis showed differentially expressed proteins in the brain in response to TiO2 NP exposure, even though no NPs were detected in the tissue [47]. Oxidative-stress-related damage with a consequent change in the balance between oxidative and antioxidative activities was observed both in vitro [48e50] and in vivo [39,42,44,45,47]. Levels of malondialdehyde, an oxidative marker, increased after intranasal instillation [39,44] of TiO2 NPs. A similar effect was also found with intraabdominal injection and intratracheal instillation of TiO2 NPs in mice [42]. Reactive oxygen species (ROS) such as superoxide [42], hydrogen peroxide [42,45], and hydroxyl radical [42] were also found to be increased in animals treated with TiO2 NPs. Increased cytokine levels, which are indicative of inflammatory effects in the brain, were detected in animals treated with TiO2 NPs [44,51]. TiO2 NPs (P25 Degussa TiO2 and rutile forms) when injected intraperitoneally in mice induce an increase in lipopolysaccharides, and alter the mRNA levels of interleukin IL-1b and tumor necrosis factor (TNF)-a, as well as IL-1b protein. Lipopolysaccharide induction was necessary  to cause this phenomenon, which suggests the importance of a trigger element or a possible synergistic role in tissue responses to nanoparticulate TiO2. The embryotoxic role of TiO2 was also studied by maternal intravenous injection of TiO2 NPs, which yielded no characterized TiO2 NPs [52], and by subcutaneous injection of TiO2 NPs in the anatase form [53e55]. In the case of subcutaneous injections, TiO2 accumulation was found in the offspring cerebral cortex and olfactory bulb. A large number of olfactory bulb cells were found to be positive for markers of apoptosis [53]. Altered gene expression was detected for prenatal TiO2 NP exposure, which was involved in cell death, brain development, and the response to oxidative stress in newborn pups [54]. Finally, the influence of prenatal TiO2 NP exposure on the dopaminergic system was established as increased levels of homovanillic acid, dopamine, 3,4dihydroxyphenylacetic acid, and 3-methoxytyramina hydrochloride in the prefrontal cortex and neostriatum of exposed mice [55]. These findings indicate that TiO2 NPs can be carried from the mother to the fetal brain, which ultimately has a toxic effect on fetal brain development, leading to several nervous system disorders. More in-depth studies are necessary in order to understand fully the toxic effect of TiO2 NPs on neurons in various stages of life, including during pregnancy and early stages of development.

Zinc oxide NPs

Like TiO2, another metal-based NP is zinc oxide (ZnO), which has broad uses and applications. ZnO is also white, thermally stable, and a naturally occurring material. It can be used to develop sunscreens, biosensors, food additives, cement, rubber, ceramics, pigments, plastic, catalysts, and electronic materials. ZnO shows antibacterial activities and in recent years studies have also focused on the effect of nanoparticulate ZnO on various microorganisms [56,57]. In recent years, ZnO toxicity has been demonstrated both in vitro and in vivo in various mammalian cells. Dissolved Zn from the NPs is responsible for the toxicity. ROS were detected in these studies and may have been responsible for the inflammatory effects associated with ZnO toxicity. The neurotoxic effect of ZnO has not been studied much. In one of the early works, neurotoxicity of different-sized ZnO NPs (10-200 nm) in mouse neural stem cells (NSCs) was investigated. As determined by cell viability studies, ZnO NPs showed dose-dependent toxic effects towards NSCs. However no size dependent toxic effects on NSCs were found in this study [58]. Using confocal microscopy, transmission electron microscopy, and flow cytometry, apoptotic cells were detected and analyzed in this toxicity study. Like previous studies, the results indicate that ZnO NP toxicity originates from the dissolved Zn O in the culture medium or inside the cells
 [58]. The effects of ZnO NPs on voltage-gated sodium and potassium pumps and action potential generation have been studied by Zhao et al [59]. The study on isolated rat hippocampal CA3 pyramidal neurons demonstrated that ZnO NP solution was able to generate neuronal injury by inducing depolarization through activation of voltage-gated sodium channels, and led to higher Naþ influx and intracellular accumulation of Naþ and Ca2þ, release of glutamate, and neuron excitability.
 ZnO  
NPs are also able to induce neuronal apoptosis by depleting intracellular K level due to increased ion efflux
 [59]. An in vivo toxicity study involving rats showed that intraperitoneal ZnO altered synaptic plasticity, which changed spatial learning and memory ability [60]. In that study, 20-80-nm ZnO NPs (4 mg/kg body weight) twice weekly for 8 weeks were administered to rats. ZnO NPs synthesized using the solegel method and starch as a template have been tested for in vitro cytotoxicity in neuro2A cells. A dose-dependent toxicity profile was obtained, whereas nontoxic effects were seen at a concentration < 6 mg/mL [61]. More studies have shown that the antibacterial activity or adverse effects of ZnO NPs are partly due to the generation of ROS [62-69], or causing membrane damage through the direct NPecell membrane interaction or generation of ROS [56,65], or release of Zn2þ ions in the ZnO NP suspensions [27,67]. Studies in mammals have suggested that oral exposure of ZnO NPs causes an increase in blood viscosity and pathological lesions in the stomach, liver, kidney, pancrea, and spleen [70]. However, the potential hazards of high concentrations of manufactured nanoscale ZnO on the CNS need further investigation.

Manganese oxide NPs

Manganese is an important metal. It is a trace element and necessary for survival. In plants in photosystem II, a manganese-containing metal cluster is responsible for oxygen generation from water activity and there are several enzymes that use manganese for their activity [71]. Manganese has found several other uses in our lives. Manganese is a major component of making different types of steel and cast iron [72]. Manganese chloride is used in batteries, disinfectants, dyes, paint driers, and dietary supplements. Oxides of manganese, such as manganese oxide (MnO), are used in colored glass, ceramics, paints, textile printing, fertilizers, and in food supplements and additives. Manganese dioxide (MnO2) is used in batteries and may also be generated from the welding of manganese alloys. Use of manganese-containing welding rods is a major source of occupational exposure to welders. Manganese tetroxide (Mn3O4) may be generated in situations where other oxides of manganese are heated in air [73]. Methylcyclopentadienyl manganese tricarbonyl is used as an antiknocking agent in some unleaded gasolines. The compound is released to the environment during fuel combustion in the form of manganese sulfate, phosphate, and oxides. Farm workers who work with Maneb (manganese ethylenebis-dithiocarbamate) may also be exposed to a significant amount of manganese [74]. As manganese is known for its neurotoxicity, toxicity studies associated with manganese-containing nanomaterials provide a useful test case in the evaluation of nanomaterial toxicity [75]. The occupational disease associated with manganese exposure and toxicity is known as manganism. The disease in later stages resembles Parkinson's disease [76]. It has been found that if manganese is inhaled in water-soluble and water-insoluble forms, it is translocated to the brain, crossing the BBB via the olfactory nerve pathway [77]. It has been found that, among many metals, manganese is preferentially taken up via the olfactory nerve route [21,78]. After nasal exposure to manganese oxide NPs (MnO, MnO2, Mn2O3, and Mn3O4), the concentration of manganese in the olfactory bulb, striatum, frontal, and other brain regions is increased. Macrophage inflammatory protein-2, glial fibrillary acidic protein, and neuronal cell adhesion molecule mRNA is also increased in the olfactory bulb. The results indicate that the olfactory neuronal pathway is efficient for translocating inhaled manganese oxide as solid ultrafine particles to the CNS and can result in inflammatory changes [24]. Although absorption of manganese in the lungs is dependent on particle size and solubility [24,79], for neuronal manganese uptake and further translocation into the CNS, dissolution of manganese is not necessary
. As mentioned earlier, major sources of ultrafine manganese oxide particles include the iron and steel industries, battery production, ferroalloy production, and power plant and coke oven combustion emissions [80]. Use of glass, paints, and ceramics may also provide major sources of manganese oxide. Methylcyclopentadienyl manganese tricarbonyl is presently used in gasoline, mainly in Canada and Australia [81,82], and decomposition and oxidation of 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) during combustion may release manganese oxide of nanoparticulate size into the environment. In all of these cases, the most likely route of human exposure is through inhalation. Toxicity of various manganese oxide nanomaterials has been investigated in a neuronal precursor cell model. The Promega Cell  Titer Aqueous One Solution Cell Proliferation (MTS) assay was used to evaluate mitochondrial function in living cells and the lactate dehydrogenase (LDH) assay was used to quantify the release of the enzyme as a result of damage to the cell membrane. Both assays indicated that manganese toxicity was dependent on the type of manganese oxides and their concentration. State of cell differentiation also contributed to varying NP toxicity. Manganese oxide NPs are responsible for the generation of ROS and cell death due to apoptosis, as revealed by flow cytometry. During cell division, exposure to manganese oxide NPs results in elevated levels of the transcription factor nuclear factor NF-kB
. Such enhanced levels of NF-kB mediate the cellular inflammatory response [83]. In another study, Hussain et al [84] investigated the effect of manganese oxide NPs (40 nm) on dopamine production in PC12, neuronal phenotype cells. Manganese oxide NPs induced depletion of dopamine and its metabolites dihydroxyphenylacetic acid and homovanillic acid in PC12 cells, with a similar mechanism as Mn2þ
 [84]. In an in vivo study, adult male Wistar rats were exposed to MnO2 NPs of w23 nm diameter. The experiment was a model study to understand the inhalational risks associated with MnO2 NPs. MnO2 NPs were instilled into the trachea for several weeks in daily doses of 2.63 mg/kg and 5.26 mg/kg. The endpoints of functional neurotoxicity (open field behavior and electrophysiology) and general toxicity (body and organ weights) were investigated. Animals treated with MnO2 did not gain weight after 6 weeks exposure. High levels of manganese were detected in brain and blood samples of the treated animals after 9 weeks exposure. The open field behavior of treated rats showed decreased ambulation and rearing, and increased local activity and immobility were observed. Electrophysiological studies of animals treated for 9 weeks indicated a shift in spontaneous cortical activity to higher frequencies,  lengthened cortical evoked potential latency, and slowed nerve conduction. Many of these neurofunctional and general parameters were significantly correlated with the tissue manganese levels. It can be concluded that the instilled manganese in the NP form was absorbed and the NPs were responsible for the neurotoxic effects 
[85]. The acute oral toxicity of MnO2 NPs and MnO2 bulk particles in female albino Wistar rats was investigated [86]. MnO2 NPs (45 nm) exhibited higher absorption and tissue distribution compared with MnO2 bulk particles. The histopathological analysis revealed that MnO2 NPs caused alterations in the liver, spleen, and brain. The neurotoxicity of 45-nm MnO2 NPs in the brain and red blood cells, as determined through acetylcholinesterase activity, was significantly inhibited at doses of 1000 mg/kg and 500 mg/kg. MnO2 NPs (45 nm) disrupted the physicochemical state and neurological system of the animals through alterations in ATPases via the total NaþeKþ, Mg2þ, and Ca2þ levels in the brain. Toxicity of Mn3O4 NPs was investigated in ST-14 rat striated neuroblasts, a neuronal precursor cell model, using the MTS assay to evaluate mitochondrial function in living cells and the LDH assay to quantify the release of the enzyme as a result of damage to the cell membrane [87]. Both assays showed that the toxicity of Mn was dependent on the type of manganese oxide NPs and their concentration, as well as the state of cell differentiation. Following exposure to manganese oxide NPs, ROS were generated, and flow cytometry experiments suggested that cell death occurred through apoptosis. During exposure to manganese oxide nanomaterials, increased levels of the transcription factor NF-kB (which mediates the cellular inflammatory response) were observed.

Silver NPs

death and oxidative stress in human skin carcinoma and fibrosarcoma cells [94]. The same group have also reported that Ag NPs can enter cells, causing DNA damage and apoptosis in liver cells and fibroblasts [95]. Cell viability is decreased when alveolar macrophages and lung epithelial cells are treated with Ag NPs [96]. In vitro studies have shown Ag NP toxicity in neural-like cell lines, such as PC12 cells, which is a rat cell line with a neuronal-like phenotype [97]. It has been shown that Ag NPs could come across through and be accumulated in brain microvessel vascular endothelial cells. An in vitro BBB model composed of primary rat brain microvessel vascular endothelial cells, it has been shown crossing and accumulation capability of silver nanoparticles 
[98]. Ag NPs can induce inflammation and affecte the integrity of this BBB model, and be readily translocated to the brain [99]. Ag NPs can also induce BBB damage, astrocyte swelling, and neuronal degeneration [100]. Ag NPs can translocate to the brain using the nasopharyngeal system as a gateway during inhalation exposure [17]. In vivo studies by Liu and coworkers have shown the effects of Ag NPs on hippocampal synaptic plasticity and spatial cognition in rats. Their studies have revealed that intranasally administered Ag NPs induce impairment of hippocampal function 
[101]. These results suggest that Ag NPs cause neurotoxicity in humans and other animals. More recently, a significant finding indicated that 7nm Ag NPs decreased motor activity and body weight in a time- and dose-dependent manner after intravenous injection, suggesting that the nervous system may be targeted by Ag NPs [102]. Yin and coworkers tried to establish the mechanism of Ag NP neurotoxicity both in vitro and in vivo using rat cerebellar granule cells. Their studies indicated that Ag NPs, depending on the caspase-activation-mediated signaling, drastically decreased the survival of primary neuronal cells through apoptosis coupled to oxidative stress [103].

Silver is a bright, silvery white, soft metal that has been used for thousands of years. Silver ornaments, utensils, and art work have been around for a long time. Silver has monetary value and silver coins and jewelry are considered as valuables. Silver is used in large quantities as catalysts, mainly in the production of ethylene oxide. It is also used industrially for conductors, mirrors, and photographic applications. One of the interesting properties of silver is its antibacterial and antifungal activity. As a result, the use of nanoparticulate silver is one of the fastest growing areas of commercial NP applications [88]. Due to their excellent antibacterial properties, silver NPs have been used in food services, building materials, textile industry, medical instruments, personal care products, and washing machines [89]. Silver NPs (Ag NPs) are used as room sprays, deodorants, wall paints, and laundry detergents, and are also used for indoor air purification and water detoxification [90,91]. As a result of these widespread uses and exposure of silver NPs to humans, it is likely that Ag NPs enter the body and accumulate in various tissues and organs [92]. Previous research has indicated that Ag NPs can accumulate in several organs, which includes the kidney, liver, testis, lung, and brain [93]. In vitro studies have shown that Ag NPs are capable of inducing toxicity in cells derived from a variety of tissues, including liver, skin, vascular system, lungs, and reproductive organs
Iron oxide (FeO, Fe2O3, Fe3O4) NPs

Iron oxide or superparamagnetic iron oxide nanoparticles (SPIONs) have become one of the most favorable and exciting choices in both the industrial and biomedical fields, due to their superparamagnetic property and other physicochemical characteristics unique to nanomaterials. SPIONs (Feridex) are small NPs composed of a Fe3O4 (magnetite) or Fe2O3 (maghemite) core. Although maghemite is naturally ferromagnetic, with the decreasing size (< 30 nm), it becomes superparamagnetic. Their potential application ranges from biomedical imaging (magnetic resonance imaging, positron emission tomography, or ultrasound as contrast agent), gene and drug delivery, tissue regeneration, hyperthermia in cancer treatment, catalysis, and magnetic storage [104]. They are extensively used specifically for brain imaging or braintargeted drug and gene delivery, due to their ability to move across the BBB [105]. SPIONs are metal oxide NPs that have been clinically approved, although recently they have been taken off the market [106,107]. In spite of their desirable traits, there is a critical need to investigate their toxicity both in vivo and in vitro. SPIONs have already been shown to have potential toxicity that can lead to altered gene expression, actin modulation, interference with cell cycle regulation and signaling pathways, excessive ROS generation, and disruption of iron homeostasis [108]. According to the recent findings, environmental factors are a major contributor to the development of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease [109]. Peters et al [110] have emphasized the significance of oxidative stress generated by NPs in the brain, along with the evaluation of the possible connection between long-term NP exposure and neurodegenerative disease. With increased use of Fe3O4 NPs in industry and biomedical sciences, the risk related to occupational exposure has escalated considerably. Involvement of ultrafine particulate materials in polluted air leads to protein fibrillation
. Fibrillation of specific proteins, for example, Ab42 and a-synuclein, may play a role in the development of Alzheimer's disease and Parkinson's disease [111]. SPIONs have further been shown to form a corona with plasma proteins. This corona can lead to several toxic side effects because the initial cellular interaction of magnetic nanoparticle (MNP) changes lead to downstream modification of cellular and tissue interaction [112,113]. In 2007, Pisanic et al [114] used PC12 cells as a quantifiable in vitro model system to study the toxic effect of anionic Fe3O4 MNPs in a dosedependent manner. In that study, it has been established that when PC12 cells were exposed to the anionic MNPs at an increasing concentration ranging from 0.15mM to 15mM iron, they lost their viability and were unable to generate normal neurite growth in the presence of nerve growth factor. They have concluded that the anionic MNPs were possibly interfering with transcriptional regulation and protein synthesis, for example, Growth associated protein (GAP)-43 leading to cellular death and phenotypic changes. In 2009, Wang et al [115] discussed the ability of submicron level Fe3O4 NPs to be transported to the brain via the olfactory nerve pathway, leading to oxidative-stress-related damage in the brain. They also discussed changes in the ultrastructure of the olfactory bulb nerve cells. Recently, Wu et al [116] have focused on the neurotoxicity of iron oxide NPs in the rat brain (in vivo). The study investigated the effect of uptake and retention of Fe3O4 NPs in rat brain hippocampus and striatum, including oxidative injuries. The olfactory bulb, striatum, and hippocampus seemed to be the main sites for Fe3O4 NP deposition after intranasal instillation [117]. Approximately 80% of NPs were still found in the striatum at 7 days after instillation and about 50% were found in both the striatum and hippocampus after 14 days. The striatum in the instillation groups exhibited comparatively more susceptibility to oxidative stress, as indicated by increased levels of H2O2 and decreased Glutathione peroxidase (GHS-PX) activity in the control group at 7 days after exposure. The group also investigated the effect of Fe3O4 NPs in PC12 cells in vitro. The PC12 cells showed dose-dependent cytotoxicity, as measured by LDH release and MTT assay, demonstrating membrane disruption and mitochondrial enzyme activity, respectively. The oxidative stress was also evident by the reduced GSH-PX and superoxide dismutase activity
, and increased ROS level and lipid peroxidation. Fe3O4 NPs also had a substantial cytotoxic effect on PC12 cells by modulating the cell cycle and inducing apoptosis. JNK is usually activated by oxidative stress and modulates apoptosis, neurodegeneration, cell cycle control, and cellular proliferation [118]. The cells also exhibited phosphorylation of p53 protein at ser15 position and elevated levels of bax and bcl-2 proteins upon exposure to NPs. It has been demonstrated that intranasally instilled Fe2O3 NPs are transported into the brain via the olfactory route [119], and additional investigation has been made of the size-related effect. After a single intranasal exposure of 21-nm Fe2O3 NPs, there was a significant increase in iron content in almost all the brain regions, from the olfactory bulb, hippocampus, cerebral cortex, and cerebellum to the brainstem 
[120]. However, a single intranasal exposure of 280-nm Fe2O3 NPs led to a significant increase in iron content only in the olfactory bulb and hippocampus, with no significant alteration of iron content in other brain regions. At 30 days after instillation of 280nm Fe2O3 NPs in mice, the iron content in the olfactory bulb and hippocampus also increased but was lower than that in mice treated with 21-nm Fe2O3 NPs. It is widely known that brain iron accumulation is associated with the oxidative stress induced by the formation of the highly reactive OH via the Fenton reaction [121e123]. The excess iron in the brain suggests an association with the oxidative stress response. The generation of ROS is a well established paradigm to explain the toxic effects of NPs [40]. It has been demonstrated that intranasal exposure of iron oxide NPs causes a certain degree of oxidative stress response in mouse brain [119]. Significant oxidative stress responses in the brain of mice have also been observed after intranasal exposure of 21-nm and 280-nm Fe2O3 NPs [124]. Alterations of iron and zinc levels in the brain are more evident in mice exposed to nano-sized than submicron-sized Fe2O3. Furthermore, the strong positive correlation between the iron and zinc levels in the sub-brain regions may contribute to the understanding of zinc homeostasis in the brain after Fe2O3 particle inhalation. The biomarkers of oxidative stress, activity of nitric oxide synthases, and release of monoamine neurotransmitters in the brain have been studied as well [115]. It was shown that significant oxidative stress was induced by the two sizes of Fe2O3 NPs. The activities of GSH-PX, copper, zinc superoxide dismutase, and constitutive nitric oxide synthase were significantly elevated and the total glutathione and glutathione/glutathione disulfide ratio were significantly decreased in the olfactory bulb and hippocampus after treatment with nano- and submicron-sized Fe2O3 particles. The nano-sized Fe2O3 generally induced greater alteration and a more significant dose effect response than the submicron particles did. Transmission electron microscopy showed that nano-sized Fe2O3 treatment induced some ultrastructural alterations in nerve cells, including neurodendron degeneration, membranous structural disruption, and increased lysosomes in the olfactory bulb, dilation in the rough endoplasmic reticulum, and increased lysosomes in the hippocampus.
 The results indicated that intranasal exposure of Fe2O3 NPs could induce more severe oxidative stress and nerve cell damage in the brain than the larger particles did. Fe3O4 NPs also exert cytotoxic effects by influencing the cell cycle and apoptosis [116]. For example, cells are arrested at the G2/M phase after 24 hours exposure to NPs. Arrest at the G2/M phase provides time for these cells to instigate DNA repair and delay cell death. However, cells with impaired DNA repair processes enter apoptosis. The study indicates that Fe3O4 NPs are deposited and retained in the striatum after intranasal instillation, and the NPs may then cause oxidative damage in the striatum. The results of in vitro studies on dopaminergic neurons have demonstrated that Fe3O4 NP exposure decreases cell viability and induces marked oxidative stress. Furthermore, Fe3O4 NPs mediated apoptosis signaling pathway included JNK and c-Jun phosphorylation, p53 phosphorylation, Bax upregulation, Bcl-2 downregulation, and apoptosis.

Copper and copper oxide NPs

Copper is one of the essential trace elements for energy production in biological systems. Copper is a requirement for the synthesis of different enzymes, including cytochrome c oxidase, superoxide dismutase, tyrosinase, lisyl oxidase, and cupro-protein [125,126]. Copper is also responsible for stimulating the production of neurotransmitters such as epinephrine and norepinephrine in the brain and can be found there at a high concentration [127]. However, at higher than normal levels, unbound copper become toxic to the human body because it disrupts homeostasis. Its redox activity can give rise to ROS, leading to oxidative stress and modification of protein, lipid, and nucleic acid [128,129]. Compounds of copper such as copper oxide (CuO) NPs have found a broad use in various areas. CuO NPs are used in inks, lubricants, coatings, semiconductors, heat transfer fluids, antimicrobial preparations, and intrauterine contraceptive devices [130]. Copperbased NPs are used as lubricant additives because they reduce friction and wear, and worn surfaces can be repaired by an addition of copper NPs in lubricants. As more copper NPs are currently in use, it is likely that human exposures to copper NPs will increase gradually. Due to their nanolevel size, CuO NPs are capable of crossing the BBB and pose a threat to the CNS. Studies have shown that copper NPs can cause BBB dysfunction, swelling of astrocytes, and neuronal degeneration once introduced into the bloodstream [1,131]. Li et al [132] showed neurotoxicity of CuO NPs in a dose-dependent manner in H4 neurogiloma cells using an automated image analysis technique. Primary cultures of dorsal root ganglion of neonatal rat pups were investigated to measure neurotoxicity of copper NPs of varying size and concentration by Prabhu et al [133]. After exposured to 10-100mM copper NPs (40 nm, 60 nm, and 80 nm) for 24 hours, the neurons started to develop vacuoles
 and became detached from the substratum. They also exhibited disruptive neurite growth. LDH and MTT assays have also shown the significant toxicity of copper NPs, and the smaller size is associated with higher toxicity. The whole-cell patch-clamp technique was used to study the influence of CuO NPs on voltage-dependent potassium current in acutely isolated rat CA1 pyramidal neurons of the hippocampus [134]. Although the CuO NPs did not have a significant effect on the outgoing potassium current, they did inhibit the delayed rectifier potassium current at a relatively high concentration. CuO NPs shifted the inactivated curve of rectifier potassium current negatively but did not show any significant effect on transient outgoing potassium current. These blockades of the potassium current might inhibit the normal functional activity of nerve cells. In another study, Trickler et al [135] has determined the effect of copper NPs on induction of proinflammatory mediators, followed by their influence on rat brain microvessel endothelial cells. At a low dosage, the copper NPs enhanced cellular proliferation, whereas at a high concentration, they started to express toxicity. NP exposure increased prostaglandin E2 release. Extracellular levels of TNF-a and IL-1b were considerably higher in the exposed cells. This resulted in the disruption of cerebral microvasculature by increasing its permeability. According to Karlsson [136], nano-CuO is highly toxic when compared with other metal oxide NPs. However, few studies have investigated the direct effects of nano-CuO on neurotoxicity and the potential mechanisms involved in these effects. A study explored the potential neurotoxicity of nano-CuO on ion channels of neuron, voltage-dependent sodium current (INa) in rat hippocampal slices with whole cell patch-clamp technique [137]. The results showed that nano-CuO inhibited the peak amplitude of INa, which might have decreased intracellular Naþ concentration due to decreased Naþ influx. This could inhibit the exchange of Naþ for Ca2þ by NaþeCa2þ exchangers [138]. The exchanger was shown to generate inward current during the repolarization phase of the action potential [139], thus, the effect on INa could contribute to the change in action potential shape by nano-CuO. It is well established that voltage-gated sodium current (VGSC) plays a role in neurotransmitter release [140]. Thus, the effects of nano-CuO on INa also mean that modulation may produce functional effects on neurotransmission in the CNS. It has been shown that nano-CuO produces a hyperpolarizing shift in the activation curve. The S4 segment in a subunit of VGSCs contains 4-8 positively charged residues at three residue intervals. They serve as voltage sensors and initiate the voltage-dependent activation of VGSCs by moving outward under the influence of the electric field [141,142]. The results suggest an effect on the S4 segment of the activation gating, resulting in conformational changes of the channel. The findings also confirm that the effects of nano-CuO on hippocampal neurons are mediated through activation of ROSeINaeaction potential signaling cascades and are independent from the G-protein pathway. These results show the primary mechanisms underlying nano-CuO-induced INa amplitude inhibition and improve our understanding of nanoCuO neurotoxicology. To determine the potential neurotoxicity of CuO NPs, human SH-SY5Y neuroblastoma and H4 neuroglioma cells were exposed at a concentration range of 0.01-100 mM for 48 hours [132,143]. The data indicated that exposure of CuO NPs induced differential toxic effects in both SH-SY5Y and H4 cells, and the cells had dose-dependent toxic responses to the CuO NPs. The toxic effects of CuO NPs were also investigated in a semiadherent, fast-growing, mouse neuroblastoma cell line (N2A cells), to provide a better understanding of the toxicological risks of CuO NPs in future nanotechnology developments [144]. N2A cells were less sensitive to CuO NP effects than other cultured cells were. The lower sensitivity may have been due to the agglomeration of CuO NPs in the culture medium, which resulted in an average particle size > 300 nm. Agglomeration of CuO NPs reduced surface-specific effects specific to nanoscale materials, and increased the contribution of particle solubilization in the toxic response induced in N2A cells. Agglomerated CuO NPs induced both cytotoxic and genotoxic effects in N2A cells.

Aluminum oxide (alumina, Al2O3) NPs

In recent years, the areas of nanotechnology and nanomedicine have expanded rapidly, aluminum oxide (alumina) NPs, having good electric and abrasive properties, are widely used as abrasive agents or insulators in motor vehicles, electronics, energetics, exterior coatings, personal care products, scratch-resistant coatings, alloys, and sensors [145]. This has led to increased human exposure to aluminum oxide NPs (nano-alumina). An in vivo study in ICR mice aimed to investigate the effects of nano-alumina, with a focus on the effects on neurobehavioral defects and possible mechanisms of action. It showed that nano-alumina induced apoptosis via increased caspase-3 gene expression and impaired spatial learning behavior, which suggests that mitochondrial impairment plays a key role in the neurotoxicity of nano-alumina [146]. The research could help to understand the underlying mechanisms of toxicity of nano-alumina, particularly with respect to neurobehavioral function. The authors declared that impairment of the mitochondria played an important role in the neurotoxicological effects of nano-alumina and might be a direct cause of neurobehavioral defects. The possible neurotoxic effects of nano-alumina and bulk alumina have been compared in nematodes [147]. The relatively large surface area of nano-alumina compared with bulk alumina might also explain the differences in toxicity between nano-alumina and bulk alumina. The decrease in locomotive behavior in nematodes chronically exposed to nano-alumina was associated with both an increase in ROS generation and disruption of ROS defense mechanisms. Drosophila was used as another model organism to explore the effects of nano-alumina on the CNS [148]. The rhythmic and electrophysiological activities in the antennal lobe of Drosophila were recorded using patch clamps. Fifteen minutes after application of nano-alumina, the average frequency of spontaneous activity was significantly decreased compared with that of the control groups. The results indicate that nano-alumina might have adverse effects on the CNS in Drosophila. The hypothesis that nano-alumina can affect the BBB and induce endothelial toxicity has been proposed [149]. In the first series of experiments, human brain microvascular endothelial cells were exposed to nano-alumina and control NPs in dose- and time-responsive manners. Treatment with nano-alumina markedly reduced human brain microvascular endothelial cell viability, altered mitochondrial potential, increased cellular oxidation, and decreased tight junction protein expression as compared to treatment with control NPs. Alterations of tight junction protein levels were prevented by cellular enrichment with glutathione. In the second series of experiments, rats were infused with nano-alumina at a dose of 29 mg/kg and brains were stained for expression of tight junction proteins. Treatment with nano-alumina resulted in marked fragmentation and disruption of integrity of claudin-5 and occludin. The results indicate that the cerebrovasculature could be affected by nano-alumina. In addition, the data indicate that alterations of mitochondrial function might be the underlying mechanism of nanoalumina toxicity. As far as the assessment of toxicological properties of nanoparticles is concerned, it is important to know whether cultured neural cells take up NPs, and if so, what mechanisms are involved [150]. Ultrastructural examination has shown that nano-alumina penetrates the cell membrane and that some particles are engulfed by the cells and mainly accumulated in the cytoplasm. It has been demonstrated that the NPs entering the cells are likely to have an effect on cellular function. Bulk-alumina-treated cells show apoptotic characteristics, whereas nano-alumina-treated cells demonstrate both apoptotic and necrotic morphological changes. Photomicrographs show that the vesicles with individual particles and aggregates remain in the cytoplasm and the nucleus. According to transmission electron micrographs, NPs form aggregates inside the lysosomal vesicles and their internalization in lysosomal bodies is arranged in a perinuclear fashion. The presence of an elevated amount of lysosomes might reflect enhanced phagocytosis of exogenous particles. Microglia and astrocytes are dominant glial and major immune cells in the CNS. They are sensitive to changes in the microenvironment of the CNS and are rapidly activated in almost all conditions that affect normal neuronal functions. Activation of microglia and astrocytes in the cortex and hippocampus following peripheral administration of nanoalumina have been analyzed in SpragueeDawley rats [151]. There was significant glial activation induced in rat brain after nano-alumina administration.

Silicon dioxide (silica) NPs

Silica (SiO2) NPs have been developed for mechanical polishing, additives to food and cosmetics, and have various applications in biomedical fields, including diagnosis, optical imaging, targeted drug delivery for the CNS, cancer therapy, and controlled drug release for genes and proteins. In particular, being considered more biocompatible than other imaging NPs, silica NPs are emerging as ideal materials for medical applications. For applications of potential drug delivery, imaging, and diagnostics in the CNS, silica NPs are also being modified or used for coating or stabilization of other optical materials. However, to date, little is known concerning the potential adverse effects on the brain associated with exposure to silica NPs. Research has indicated that silica NPs via intranasal instillation enter the brain and show a distinct pattern of biodistribution, and are especially deposited in the striatum,[image: image4.png]


 except for the olfactory bulb [152]. Such an accumulation could result in oxidative stress, inflammatory changes, and functional damage of the striatum
. In addition, silica NPs appeared to induce depleted dopamine in the striatum, and the main contribution was downregulation of tyrosine hydroxylase protein
. In vitro studies on dopaminergic neurons have demonstrated that silica NPs have marked cytotoxic effects and oxidative stress activity against PC12 cells [152]. Furthermore, activation of the p53 pathway is involved in the mechanism of the silica-NP- induced G2/M arrest and apoptosis. Additionally, the decrease in dopamine levels is most likely attributable to the reduction of dopamine synthesis. The authors have claimed that although extrapolation of the animal effects to humans remains a challenge, their results for the neurotoxic effect on rat brains could be suggestive of human exposure, because different species may respond differently to the same substance. Another study demonstrated that exposure to 300 ppm silica NPs in differentiating cells showed less cytotoxicity than in undifferentiated cells [153]. Silica NPs at 100 ppm had no significant effect on the viability of either undifferentiated or differentiating neuroblastoma (SH-SY5Y) cells. Neurite outgrowth in differentiating cells after 48 hours exposure to 100 ppm silica NPs was not significantly changed. Thus, silica NPs appeared to have no effects in the early initiation of neurites. Although the production of ROS was not induced, neurotoxicity induced by silica NPs may be the result of increased DNA damage, apoptosis, and cell cycle arrest in undifferentiated and differentiating cells, which is independent of neuronal differentiation of SH-SY5Y cells.

Carbon-based nanomaterials

Owing to their unique chemical and physical properties, carbon-based nanomaterials have a potential use in a variety of biomedical applications, including early diagnosis of cancer, imaging, targeted photothermal therapy, drug delivery, and tissue engineering. Based on the shape, organic carbon-based nanomaterials are categorized as carbon nanotube, fullerene, graphene, or carbon NPs. Carbon nanotubes are onedimensional forms of graphitic material and are present in many forms, depending on the number of graphene sheets used: single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes with diameters of 1-2 nm and lengths of 0.05-1 mm. Graphene has similar chemical composition and crystalline structure with a flat sheet with a single layer or multilayer graphene with several layers. The fullerenes (C60) are named after Richard Buckminster Fuller as buckminsterfullerene, or the "bucky ball". This allotrope of carbon consists of 60 carbon atoms joined together to form a cage-like structure. C60 is soluble in aromatic solvents (e.g., toluene or benzene), but insoluble in water and alcohol. However, C60 can be functionalized (e.g., with eOH, eCOOH, or eNH2) to increase its hydrophilicity. By contrast, aqueous fullerene aggregates can be generated by mixing pure C60 in water or through solvent extraction. Some fullerenes have been shown to inhibit human immunodeficiency virus (HIV) activity through inhibiting an HIV-associated protease, an essential enzyme for viral survival. It has been reported that some fullerenes can interact with biological membranes to elicit antimicrobial action, antitumor activity, enzyme inhibition, DNA photo cleavage, and neuroprotective activity via antioxidant actions. At present, fullerenes are commercially used in products including fuel cells, semiconductors, and product coatings, for example, bowling ball surfaces. Studies of carbon nanomaterials have indicated the potential neurotoxic effects after inhalation or systemic exposure. Oberdorster and co-workers [17] showed that inhalation ¨ of elemental 13C NPs of 36 nm by rats, which were exposed for 6 hours whole-body exposure, led to a significant and persistent increase in the accumulation of 13C NPs in the olfactory bulb, and the NP concentration gradually increased. A recent study has shown that different shapes of carbon nanomaterials elicit different toxicity in neuronal culture models. Specifically, pure graphene is less toxic than highly purified single-walled carbon nanotubes in a concentration dependent manner after 24 hours exposure of PC12 cells, involving the apoptosis pathway [154]. Subsequently, the impact of surface functionalization on the toxicity of carbon nanotube has been demonstrated using the same culture model. Carbon nanotubes with surface-coating polyethylene glycol are less toxic 
than uncoated carbon nanotubes, by measuring mitochondrial function and membrane integrity. A mechanistic study has shown that oxidative stress is involved in this toxic pathway, with surface coating playing an important role [155]. It has been reported that 14-nm carbon black particles might translocate to the olfactory bulb through olfactory neurons, resulting in the activation of microglial cells, which induces proinflammatory cytokines and chemokines, suggesting an inflammatory response [156]. Additional systematic evaluations and mechanistic in vivo studies are needed to understand the effect of surface coating on the biocompatibility of these carbon-based nanomaterials prior to use in humans.

Future perspectives

Physical and chemical characterization is considered to be the key element in assessing the neurotoxicity of nanomaterials. The nanomaterials used in the study require a comprehensive physicochemical characterization before during, and after the biological testing models are exposed to nanomaterials. As mentioned previously, the size, size distribution, purity, shape, crystal structure, composition, surface coating, surface charge, and surface reactivity may result in a different distribution, accumulation, and transport of the nanomaterials to the target organs, as well as across the BBB. Research findings are meaningless for hazard identification in the absence of adequate evaluation of the physical and chemical properties of nanomaterials. For example, impurities that contaminate the nanomaterials being tested may contribute most to neurotoxicological responses. The dissolution of metal ions from metal oxide nanomaterials may play an important role in neurotoxicity. The size or surface charge of nanomaterials might change the biokinetics of the nanomaterials, resulting in different pharmacological or toxicological actions in biological systems.
 However, batch-to-batch inconsistency is a major challenge when nanomaterials are produced by different manufactures/laboratories. The exposure dose level should be carefully considered when laboratory animals or in vitro models are exposed to nanomaterials. The practically exposure level to human should be used as a reference when calculateing the relevant dose exposed to the animals or in vitro models. This will support studies for understanding the dosimetry in the nervous system. The characteristics of the nanomaterials should also be considered in physiologically based pharmacokinetic modeling to better predict the environmental hazard of the nanomaterials. To date, the data gap of well-designed neurotoxicity assessment of nanomaterials still exists
, and further in vivo studies will be considered as an urgent demand in the future. Appropriate dose eresponse research should be considered in neurotoxicological studies. Recent inhalation studies have shown that the surface area or particle number, instead of the nanomaterials mass, is considered as the major dosimetry unit in term of the dose-response relationship. Cellular or target organ dose will provide a better understanding of the neurotoxicological responses, because the physical properties might change quickly in the biological system under the experimental conditions. Sensitive and specific methods need to be developed to quantify the nanomaterials, including metal NPs or carbon-based nanomaterials. The nanomaterials may interfere with the enzymatic assay during the measurement of neurotransmitters (such as acetylcholine or dopamine) using traditional methods. Therefore, the traditional approaches using chemicals should be carefully validated because they are used in nanoneurotoxicological studies.
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*******************************************************************

NanoPlastic

Polystyrene degrades into nanoplastics.                                                                                       The formation of nanoplastic particles increase over time.                                                              Results suggest a continuous process of plastic surface erosion.
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Microplastic
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The amount of nano- and microplastic in the aquatic environment rises due to the industrial production of plastic and the degradation of plastic into smaller particles. Concerns have been raised about their incorporation into food webs.
 Little is known about the fate and effects of nanoplastic, especially for the freshwater environment. In this study, effects of nano-polystyrene (nano-PS) on the growth and photosynthesis of the green alga Scenedesmus obliquus and the growth, mortality, neonate production, and malformations of the zooplankter Daphnia magna were assessed. Nano-PS reduced population growth and reduced chlorophyll concentrations in the algae. Exposed Daphnia showed a reduced body size and severe alterations in reproduction. Numbers and body size of neonates were lower, while the number of neonate malformations among neonates rose to 68% of the individuals. These effects of nano-PS were observed between 0.22 and 103 mg nano-PS/L. Malformations occurred from 30 mg of nano-PS/L onward. Such plastic concentrations are much higher than presently reported for marine waters as well as freshwater, but may eventually occur in sediment pore waters. As far as we know, these results are the first to show that direct life history shifts in algae and Daphnia populations may occur as a result of exposure to nanoplastic.
Distribution and effects of plastic pollution that results from insufficient resource efficiency in a world that consumes 100 million tonnes of plastic annually. Plastics are of concern both for their chemical toxicity associated with the toxic additives and monomers often found in plastic products, and the adverse ecological and toxicological effects caused by the solid materials themselves
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Wastewater treatment plants have been identified as a potential source of microplastics, as many plastic particulates can be found both in sewage sludge and the treated effluents- It is expected 

particularly in areas where biosolids are applied to agricultural lands that there will be elevated microplastic levels since these materials are extremely slow to mineralise.
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Microplastics might be a vector for hazardous substances because they can sorb persistent, bioaccumulating and or toxic chemicals (e.g. POPs, endocrine disrupters). Thus, plastic particles may facilitate the entrance of these substances into the food chain, potentially threatening human health both chemically and by particle toxicity.

Glycol ethers. Glycol ethers, a chemical class with > 80 compounds, are used in a broad array of cleaning applications because of their combined hydrophilic and lipophilic nature. They are often used in paints, varnishes, and cosmetics and have been detected in a variety of household products (Kwon et al. 2008; Plaisance et al. 2008). Biomonitoring methods are currently being developed, so large-scale studies are limited. In human studies, exposure to glycol ethers has been associated with low sperm mobility
 (Cherry et al. 2008), hematological effects (Starek et al. 2008), and asthma and allergies (Choi et al. 2010).

In the present study, we analyzed all samples for 2-butoxyethanol and 2,2-methoxyethoxyethanol, and in a later second sampling round, we analyzed 14 additional samples for six other glycol ethers. We detected glycol ethers in 3 conventional cleaners, face lotion, polish/wax, sunscreen, and in alternative shaving cream, pillow protector, and sunscreen samples. Of the 5 conventional samples with detectable 2-butoxyethanol, only the carpet cleaner was labeled as containing 2-butoxyethanol. When analyzed and detected, other glycol ethers were not listed on labels. Although we detected phenoxyethanol in conventional and alternative sunscreen samples, we did not detect this chemical in some conventional and alternative samples comprising products labeled as containing this compound; levels may have been < LOD
.

**************************************************************************** 
How fasting helps fight fatty liver disease

Scientists at Helmholtz Zentrum München have new information on what happens at the molecular level when we go hungry. Working with the Deutsches Zentrum für Diabetesforschung (German Center for Diabetes Research -- DZD) and the Deutsches Krebsforschungszentrum (German Cancer Research Center -- DKFZ) they were able to show that upon deprivation of food a certain protein is produced that adjusts the metabolism in the liver. The results are published in the Open Access Journal 'EMBO Molecular Medicine'. The growing number of overweight people has long been one of modern society's pressing issues. In particular the resulting metabolic diseases such as type 2 diabetes and corresponding secondary conditions can have serious consequences for health. A reduced intake of calories, such as in the framework of an intermittent fasting diet, can help to whip the metabolism back into shape -- but why does this happen?-- This is the question that Prof. Dr. Stephan Herzig, Director of the Institute for Diabetes and Cancer (IDC) at the Helmholtz Zentrum München, and Dr. Adam J. Rose, head of the 'Protein metabolism in health and disease' research group at the DKFZ in Heidelberg, wanted to answer. "Once we understand how fasting influences our metabolism we can attempt to bring about this effect therapeutically," Herzig states

Stress molecule reduces the absorption of fatty acids in the liver
In the current study, the scientists looked for liver cell genetic activity differences that were caused by fasting. With the help of so-called transcript arrays, they were able to show that especially the gene for the protein GADD45β 
was often read differently depending on the diet: the greater the hunger, the more frequently the cells produced the molecule, whose name stands for 'Growth Arrest and DNA Damage-inducible'. As the name says, the molecule was previously associated with the repair of damage to the genetic information and the cell cycle, rather than with metabolic biology.- Subsequent simulation tests showed that GADD45β is responsible for controlling the absorption of fatty acids in the liver. Mice who lacked the corresponding gene were more likely to develop fatty liver disease. However when the protein was restored, the fat content of the liver normalized and also sugar metabolism improved. The scientists were able to confirm the result also in humans: a low GADD45β level was accompanied by increased fat accumulation in the liver and an elevated blood sugar level-The stress on the liver cells caused by fasting consequently appears to stimulate GADD45β production, which then adjusts the metabolism to the low food intake," Herzig summarizes. The researchers now want to use the new findings for therapeutic intervention in the fat and sugar metabolism so that the positive effects of food deprivation might be translated for treatment-The stress on the liver cells caused by fasting consequently appears to stimulate GADD45β production, which then adjusts the metabolism to the low food intake," Herzig summarizes. The researchers now want to use the new findings for therapeutic intervention in the fat and sugar metabolism so that the positive effects of food deprivation might be translated for treatment Story Source-The above post is reprinted from materials provided by Helmholtz Zentrum Muenchen - German Research Centre for Environmental Health. -Journal Reference-J. Fuhrmeister, A. Zota, T. P. Sijmonsma, O. Seibert, S. C ng r, K. Schmidt, N. Vallon, R. M. de Guia, K. Niopek, M. Berriel Diaz, A. Maida, M. Blu her, J. G. Okun, S. Herzig, A. J. Rose. Fasting-induced liver GADD45  restrains hepatic fatty acid uptake and improves metabolic health. EMBO Molecular Medicine, 2016; DOI: 10.15252/emmm.201505801 Helmholtz Zentrum Muenchen - German Research Centre for Environmental Health. "How fasting helps fight fatty liver disease." ScienceDaily. ScienceDaily, 9 May 2016. <www.sciencedaily.com/releases/2016/05/160509085347.htm>.

�The release of plastic materials into the environment is recognised as an important pollution related issue (� HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib17" �Sutherland et al., 2010� and � HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib18" �UNEP, 2011�). Once in the environment plastics undergo abiotic and biotic weathering processes that cause their degradation and fragmentation into increasingly smaller particles, commonly termed microplastics (MPs; often defined as fragments <5 mm). A number of environmental monitoring studies have quantified the environmental occurrence of MPs in surface waters (� HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib6" �Faure et al., 2015�), coastal sediments (� HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib2" �Browne et al., 2011�), beach sands (� HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib11" �Liebezeit and Dubaish, 2012�), freshwater sediments (� HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib4" �Castañeda et al., 2014�), and deep-sea environments (� HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib20" �Woodall et al., 2014�). MPs are also known to effectively sorb organic pollutants from surrounding water (� HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib12" �Mato et al., 2001�, � HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib5" �Endo et al., 2005� and � HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib19" �Van et al., 2012�). Therefore, internalized MPs might not only lead to direct physical injury, but also to a chemical exposure of the organism through the ingestion of pollutant loaded MPs (� HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib15" �Ryan et al., 1988� and � HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib16" �Saal et al., 2008�).


Recent publications have also suggested that MPs will subsequently degrade into nano-sized plastic particles (see � HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib1" �Andrady, 2011�, � HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib10" �Lambert et al., 2013� and � HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib13" �Mattsson et al., 2015�). The environmental impacts of nanoplastics will be different to those presented by microplastics, because of their smaller size makes tissue penetration and accumulation in organs a possibility (� HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib13" �Mattsson et al., 2015�). This is a potentially important issue given the current concerns regarding the environmental behaviour and ecotoxicity of engineered nano-materials (� HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib9" �Lambert et al., 2014�). Therefore, the aim of this work was to test the hypothesis that nanoplastic particles are formed during plastic degradation processes and that the concentrations will increase over time.





�This is basically telling you that the hijacking of human as a test subjects is being done through coercion and seduction and nothing to do with fact


�This is basically a horn blowing event~ as long as there is money involved someone will always do something some way to circumvent the regs~ and if it is all about sales then you know this is never going to be easy to accomodate


�NP= NanoParticles


�This is one of the reasoms never to buy any product with a nano delivey system or method or products that say colloidal but are in fact NANO~ these are nano particles irrespective if they come in a bottle or pill and that the food supply is also being sprayed with nano is indictive of another danger of accumulation and translocation not only through the BBB but through key organs and as well attached to DNA and the genetic code


�This would include everyone since we aare all either eating dfrinking or breatheing these particles and these particles can be active and activated by several methods as well making them unpredictably dangerious


�occurring or performed in the normal or forward direction of conduction or flow


occurring along nerve cell processes away from the cell body <anterograde axonal transport


�Pathological   extreme in a way that is not normal or that shows an illness or mental problem 


  medical : relating to or caused by disease 





� The charged particles from the NANO MATERIAL will have a negative impact


�Where direct exposure will enter the system


�Translocation into lymph node, blood and urinary excretion of INP1 (left) and INP3 (right) using real-time NIR fluorescence imaging. Each point represents the mean ± s.d. of n = 3 animals. SBR, signal-to-background ratio. (b) Frozen sections obtained from resected organs of INP1-administered Sprague-Dawley rats at 1 h after instillation. From top to bottom are representative images of lung, lymph node, kidney (arrow: cortex; arrowhead: calyces), and liver. Mu, muscle; LN+, posterior mediastinal lymph node; LN−, negative para-aortic lymph node. Scale bars, 5 mm. Shown are color video and NIR fluorescence of intact specimens (left two panels, respectively) along with representative histological images from the same organ/tissue (H&E, NIR, right two panels, respectively). Green dotted circle, bronchiole; blue dotted circle, glomerular basement membrane; red dotted circle, portal area (portal vein, hepatic artery and bile duct). Scale bars, 200 μm. All NIR fluorescence images (λExc = 760 ± 20 nm and λEm = 795 nm longpass) have identical exposure times and normalizations. (c) Quantitative biodistribution and clearance using 99mTc-conjugated INPs administered intratracheally into Sprague-Dawley rats. The small molecule TcO4− was used as a control. Translocation from lung to blood over time (top). Translocation from lung to regional lymph nodes (bottom left) 1 h after injection. Recovery of injected dose in urine, lung, body (without lungs) and total (bottom right). Each data point represents the mean ± s.d. of n = 3 animals. All values in blood curves are statistically different (ANOVA) from each other at 1 h.


�Norepinephrine is � HYPERLINK "https://en.wikipedia.org/wiki/Biosynthesis" \o "Biosynthesis" �synthesized� and released by the � HYPERLINK "https://en.wikipedia.org/wiki/Central_nervous_system" \o "Central nervous system" �central nervous system�, and also by a division of the � HYPERLINK "https://en.wikipedia.org/wiki/Autonomic_nervous_system" \o "Autonomic nervous system" �autonomic nervous system� called the � HYPERLINK "https://en.wikipedia.org/wiki/Sympathetic_nervous_system" \o "Sympathetic nervous system" �sympathetic nervous system�. In the brain, norepinephrine is produced in � HYPERLINK "https://en.wikipedia.org/wiki/Nucleus_%28neuroanatomy%29" \o "Nucleus (neuroanatomy)" �closely packed brain cell neurons� or nuclei that are small yet exert powerful effects on other brain areas. The most important of these nuclei is the � HYPERLINK "https://en.wikipedia.org/wiki/Locus_coeruleus" \o "Locus coeruleus" �locus coeruleus�, located in the � HYPERLINK "https://en.wikipedia.org/wiki/Pons" \o "Pons" �pons�. In the sympathetic nervous system, norepinephrine is used as a neurotransmitter by � HYPERLINK "https://en.wikipedia.org/wiki/Sympathetic_ganglion" \o "Sympathetic ganglion" �sympathetic ganglia� located near the � HYPERLINK "https://en.wikipedia.org/wiki/Spinal_cord" \o "Spinal cord" �spinal cord� or in the � HYPERLINK "https://en.wikipedia.org/wiki/Abdomen" \o "Abdomen" �abdomen�, and it is also released directly into the bloodstream by the � HYPERLINK "https://en.wikipedia.org/wiki/Adrenal_gland" \o "Adrenal gland" �adrenal glands� as sympathetic effector organs. Regardless of how and where it is released, norepinephrine acts on target cells by binding to and activating � HYPERLINK "https://en.wikipedia.org/wiki/Noradrenergic_receptor" \o "Noradrenergic receptor" �noradrenergic receptors� located on the cell surface.


The general function of norepinephrine is to mobilize the brain and body for action. Norepinephrine release is lowest during sleep, rises during wakefulness, and reaches much higher levels during situations of stress or danger, in the so-called � HYPERLINK "https://en.wikipedia.org/wiki/Fight-or-flight_response" \o "Fight-or-flight response" �fight-or-flight response�. In the brain, norepinephrine increases arousal and alertness, promotes vigilance, enhances formation and retrieval of memory, and focuses attention; it also increases restlessness and anxiety. In the rest of the body, norepinephrine increases � HYPERLINK "https://en.wikipedia.org/wiki/Heart_rate" \o "Heart rate" �heart rate� and � HYPERLINK "https://en.wikipedia.org/wiki/Blood_pressure" \o "Blood pressure" �blood pressure�, triggers the release of � HYPERLINK "https://en.wikipedia.org/wiki/Glucose" \o "Glucose" �glucose� from energy stores, increases � HYPERLINK "https://en.wikipedia.org/wiki/Blood_flow" \o "Blood flow" �blood flow� to � HYPERLINK "https://en.wikipedia.org/wiki/Skeletal_muscle" \o "Skeletal muscle" �skeletal muscle�, reduces blood flow to the gastrointestinal system, and inhibits voiding of the bladder and � HYPERLINK "https://en.wikipedia.org/wiki/Gastrointestinal_motility" \o "Gastrointestinal motility" �gastrointestinal motility�.





�Norepinephrine is synthesized from the � HYPERLINK "https://en.wikipedia.org/wiki/Amino_acid" \o "Amino acid" �amino acid� � HYPERLINK "https://en.wikipedia.org/wiki/Tyrosine" \o "Tyrosine" �tyrosine� by a series of enzymatic steps in the � HYPERLINK "https://en.wikipedia.org/wiki/Adrenal_medulla" \o "Adrenal medulla" �adrenal medulla� and � HYPERLINK "https://en.wikipedia.org/wiki/Postganglionic_neuron" \o "Postganglionic neuron" �postganglionic neurons� of the � HYPERLINK "https://en.wikipedia.org/wiki/Sympathetic_nervous_system" \o "Sympathetic nervous system" �sympathetic nervous system�. While the conversion of tyrosine to dopamine occurs predominantly in the cytoplasm, the conversion of dopamine to norepinephrine by � HYPERLINK "https://en.wikipedia.org/wiki/Dopamine_%CE%B2-monooxygenase" \o "Dopamine β-monooxygenase" �dopamine β-monooxygenase� occurs predominantly inside � HYPERLINK "https://en.wikipedia.org/wiki/Synaptic_vesicle" \o "Synaptic vesicle" �neurotransmitter vesicles�.� HYPERLINK "https://en.wikipedia.org/wiki/Norepinephrine" \l "cite_note-Musacchio-5" �[5]� The � HYPERLINK "https://en.wikipedia.org/wiki/Metabolic_pathway" \o "Metabolic pathway" �metabolic pathway� is:


Phenylalanine → Tyrosine → L-DOPA → Dopamine → Norepinephrine� HYPERLINK "https://en.wikipedia.org/wiki/Norepinephrine" \l "cite_note-Musacchio-5" ��





�5-hydroxytryptamine (5-HT) is a � HYPERLINK "https://en.wikipedia.org/wiki/Monoamine_neurotransmitter" \o "Monoamine neurotransmitter" �monoamine neurotransmitter�. Biochemically derived from � HYPERLINK "https://en.wikipedia.org/wiki/Tryptophan" \o "Tryptophan" �tryptophan�,� HYPERLINK "https://en.wikipedia.org/wiki/Serotonin" \l "cite_note-9" �[9]� serotonin is primarily found in the � HYPERLINK "https://en.wikipedia.org/wiki/Human_gastrointestinal_tract" \o "Human gastrointestinal tract" �gastrointestinal tract� (GI tract), blood � HYPERLINK "https://en.wikipedia.org/wiki/Platelet" \o "Platelet" �platelets�, and the � HYPERLINK "https://en.wikipedia.org/wiki/Central_nervous_system" \o "Central nervous system" �central nervous system� (CNS) of animals, including humans. It is popularly thought to be a contributor to feelings of well-being and � HYPERLINK "https://en.wikipedia.org/wiki/Happiness" \o "Happiness" �happiness�.� HYPERLINK "https://en.wikipedia.org/wiki/Serotonin" \l "cite_note-10" �[10]�


Approximately 90% of the � HYPERLINK "https://en.wikipedia.org/wiki/Human_body" \o "Human body" �human body�'s total serotonin is located in the � HYPERLINK "https://en.wikipedia.org/wiki/Enterochromaffin_cells" \o "Enterochromaffin cells" �enterochromaffin cells� in the GI tract, where it is used to regulate intestinal movements.� HYPERLINK "https://en.wikipedia.org/wiki/Serotonin" \l "cite_note-urlthemedicalbiochemistrypage.org-11" �[11]�� HYPERLINK "https://en.wikipedia.org/wiki/Serotonin" \l "cite_note-pmid19630576-12" �[12]� The serotonin is secreted � HYPERLINK "https://en.wikipedia.org/wiki/Lumen_%28anatomy%29" \o "Lumen (anatomy)" �luminally� and � HYPERLINK "https://en.wikipedia.org/wiki/Cell_membrane" \l "Membrane_polarity" \o "Cell membrane" �basolaterally� which leads to increased serotonin uptake by circulating platelets and activation after stimulation, which gives increased stimulation of myenteric neurons and � HYPERLINK "https://en.wikipedia.org/wiki/Gastrointestinal_physiology" \l "Motility" \o "Gastrointestinal physiology" �gastrointestinal motility�.� HYPERLINK "https://en.wikipedia.org/wiki/Serotonin" \l "cite_note-13" �[13]� The remainder is synthesized in � HYPERLINK "https://en.wikipedia.org/wiki/Serotonergic" \o "Serotonergic" �serotonergic� � HYPERLINK "https://en.wikipedia.org/wiki/Neuron" \o "Neuron" �neurons� of the CNS, where it has various functions. These include the regulation of � HYPERLINK "https://en.wikipedia.org/wiki/Mood_%28psychology%29" \o "Mood (psychology)" �mood�, � HYPERLINK "https://en.wikipedia.org/wiki/Appetite" \o "Appetite" �appetite�, and � HYPERLINK "https://en.wikipedia.org/wiki/Sleep" \o "Sleep" �sleep�. Serotonin also has some cognitive functions, including memory and learning. Modulation of serotonin at synapses is thought to be a major action of several classes of pharmacological antidepressants.


Serotonin secreted from the � HYPERLINK "https://en.wikipedia.org/wiki/Enterochromaffin_cells" \o "Enterochromaffin cells" �enterochromaffin cells� eventually finds its way out of tissues into the blood. There, it is actively taken up by blood � HYPERLINK "https://en.wikipedia.org/wiki/Platelet" \o "Platelet" �platelets�, which store it. When the platelets bind to a clot, they release serotonin, where it serves as a � HYPERLINK "https://en.wikipedia.org/wiki/Vasoconstriction" \o "Vasoconstriction" �vasoconstrictor� and helps to regulate � HYPERLINK "https://en.wikipedia.org/wiki/Hemostasis" \o "Hemostasis" �hemostasis� and blood clotting. Serotonin also is a growth factor for some types of cells, which may give it a role in wound healing. There are various � HYPERLINK "https://en.wikipedia.org/wiki/5-HT_receptor" \o "5-HT receptor" �serotonin receptors�.





�This explains the use of copper and the requirements of copper needing to be increased to assist in the displacing of the ZNP which is also accumalating within the cells


�This would explain the over reaction of people and there moods and anxiety issues as well due to the  turning on the glutamate activity this is where Taurine and Glyscine would come in and Magnesium and Potassium to offset the nanotoxicolgy going on in the brain


�Strips the potassium by increasing sodium ion channels so you would need more potassium to offset this and to maintain brain and heart functions


�Indicating that nanomanganese is transferable irrespective of size volume or density


�NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) is a protein complex that controls � HYPERLINK "https://en.wikipedia.org/wiki/Transcription_%28genetics%29" \o "Transcription (genetics)" �transcription� of � HYPERLINK "https://en.wikipedia.org/wiki/DNA" \o "DNA" �DNA�, cytokine production and cell survival. NF-κB is found in almost all animal cell types and is involved in cellular responses to stimuli such as stress


�In the � HYPERLINK "https://en.wikipedia.org/wiki/Brain" \o "Brain" �brain�, dopamine functions as a � HYPERLINK "https://en.wikipedia.org/wiki/Neurotransmitter" \o "Neurotransmitter" �neurotransmitter�—a chemical released by � HYPERLINK "https://en.wikipedia.org/wiki/Neuron" \o "Neuron" �neurons� (nerve cells) to send signals to other nerve cells. The brain includes several distinct � HYPERLINK "https://en.wikipedia.org/wiki/Dopaminergic_pathway" \o "Dopaminergic pathway" �dopamine pathways�, one of which plays a major role in � HYPERLINK "https://en.wikipedia.org/wiki/Reward_system" \o "Reward system" �reward-motivated behavior�. Most types of reward increase the level of dopamine in the brain~ Other brain dopamine pathways are involved in � HYPERLINK "https://en.wikipedia.org/wiki/Motor_system" \o "Motor system" �motor control� and in controlling the release of various hormones. These pathways and � HYPERLINK "https://en.wikipedia.org/wiki/Dopaminergic_cell_groups" \o "Dopaminergic cell groups" �cell groups� form a dopamine system which is � HYPERLINK "https://en.wikipedia.org/wiki/Neuromodulation" \o "Neuromodulation" �neuromodulatory�.


�Things that would inhibit Manganese These Substances may Interfere with Manganese





Minerals





Excessive consumption of Calcium may interfere with Manganese.  references


	Excessive consumption of Copper may inhibit the absorption of Manganese.  references


	Excessive consumption of Iron may inhibit the absorption of Manganese.  references





Lead may interfere with the body's absorption of Manganese.


	Excessive consumption of Magnesium may reduce the absorption of Manganese.  references


	Phosphorus may interfere with the absorption of Manganese.  references


	Potassium may interfere with the absorption of Manganese.





Excessive consumption of Zinc may inhibit the absorption of Manganese.





Polyphenols





Tannins bind to Manganese and may inhibit the absorption of Manganese.





Pharmaceutical Drugs





Pharmaceutical Antacids may inhibit the absorption of Manganese.





These Foods may Interfere with Manganese





Dairy Products





Dairy Products may reduce the body’s absorption of Manganese (due to the high Calcium content of most Dairy Products).








�Brain Damage—Another Hoax on the benefit of nano silver


�The hippocampus is a small organ located within the brain's medial temporal lobe and forms an important part of the limbic system, the region that regulates emotions. The hippocampus is associated mainly with memory, in particular long-term memory. The organ also plays an important role in spatial navigation.


Damage to the hippocampus can lead to loss of memory and difficulty in establishing new memories. In Alzheimer's disease, the hippocampus is one of the first regions of the brain to be affected, leading to the confusion and loss of memory so commonly seen in the early stages of the disease.





�biophysicochemical properties of NPs, which define their affinity for protein monomers, unfolded monomers, oligomers, critical nuclei, and other prefibrillar states--- •


Amyloidosis


•


Systemic 


-


Build


-


up of amyloid deposits 


•


Organ


-


specific amyloidosis


•


E.g. Alzheimers disease, Parkinsons disease...


•


Protein re/mis


-


folding and aggregation


•


General feature of all proteins 


(’the other side of folding’)? 


•


From native/soluble to 


non


-


native/cytotoxic, massive insoluble





�these are the highest or most potent antioxidants in the immune system and when iron nano is added is showing a  drastic reduction in them due to the fact the system is trying to rid the density of the iron and as a result is overloaded and depleted


�You would almost think that the nanotech is by design made to induce brain damage and brain trauma ~ disconnect from the body and to create the inability to think or remember


�NANO Iron causes severe nerve damage –reduces the glutathione and  SOD


�A vacuole (� HYPERLINK "https://en.wikipedia.org/wiki/Help:IPA_for_English" \o "Help:IPA for English" �/ˈvækjuːoʊl/�) is a � HYPERLINK "https://en.wikipedia.org/wiki/Biological_membrane" \o "Biological membrane" �membrane�-bound � HYPERLINK "https://en.wikipedia.org/wiki/Organelle" \o "Organelle" �organelle� which is present in all � HYPERLINK "https://en.wikipedia.org/wiki/Plant_cell" \o "Plant cell" �plant� and � HYPERLINK "https://en.wikipedia.org/wiki/Fungi" \o "Fungi" �fungal� � HYPERLINK "https://en.wikipedia.org/wiki/Cell_%28biology%29" \o "Cell (biology)" �cells� and some � HYPERLINK "https://en.wikipedia.org/wiki/Protist" \o "Protist" �protist�, � HYPERLINK "https://en.wikipedia.org/wiki/Animal" \o "Animal" �animal�� HYPERLINK "https://en.wikipedia.org/wiki/Vacuole" \l "cite_note-1" �[1]� and � HYPERLINK "https://en.wikipedia.org/wiki/Bacteria" \o "Bacteria" �bacterial� cells.� HYPERLINK "https://en.wikipedia.org/wiki/Vacuole" \l "cite_note-bacteria-2" �[2]� Vacuoles are essentially enclosed compartments which are filled with water containing inorganic and organic molecules including � HYPERLINK "https://en.wikipedia.org/wiki/Enzymes" \o "Enzymes" �enzymes� in � HYPERLINK "https://en.wikipedia.org/wiki/Solutes" \o "Solutes" �solution�, though in certain cases they may contain solids which have been engulfed. Vacuoles are formed by the fusion of multiple membrane � HYPERLINK "https://en.wikipedia.org/wiki/Vesicle_%28biology%29" \o "Vesicle (biology)" �vesicles� and are effectively just larger forms of these.� HYPERLINK "https://en.wikipedia.org/wiki/Vacuole" \l "cite_note-3" �[3]� The organelle has no basic shape or size; its structure varies according to the needs of the cell.


The function and significance of vacuoles varies greatly according to the type of cell in which they are present, having much greater prominence in the cells of plants, fungi and certain protists than those of animals and bacteria. In general, the functions of the vacuole include:


Isolating materials that might be harmful or a threat to the cell


Containing waste products


Containing water in plant cells


Maintaining internal � HYPERLINK "https://en.wikipedia.org/wiki/Hydrostatic_pressure" \o "Hydrostatic pressure" �hydrostatic pressure� or � HYPERLINK "https://en.wikipedia.org/wiki/Turgor" \o "Turgor" �turgor� within the cell


Maintaining an � HYPERLINK "https://en.wikipedia.org/wiki/Acid" \o "Acid" �acidic� internal � HYPERLINK "https://en.wikipedia.org/wiki/PH" \o "PH" �pH�


Containing small molecules


Exporting unwanted substances from the cell


Allows plants to support structures such as leaves and flowers due to the pressure of the central vacuole


In seeds, stored proteins needed for germination are kept in 'protein bodies', which are modified vacuoles.� HYPERLINK "https://en.wikipedia.org/wiki/Vacuole" \l "cite_note-4" �[4]�


Vacuoles also play a major role in � HYPERLINK "https://en.wikipedia.org/wiki/Autophagy" \o "Autophagy" �autophagy�, maintaining a balance between � HYPERLINK "https://en.wikipedia.org/wiki/Biogenesis" \o "Biogenesis" �biogenesis� (production) and degradation (or turnover), of many substances and cell structures in certain organisms. They also aid in the � HYPERLINK "https://en.wikipedia.org/wiki/Lysis" \o "Lysis" �lysis� and recycling of misfolded proteins that have begun to build up within the cell. Thomas Boller � HYPERLINK "https://en.wikipedia.org/wiki/Vacuole" \l "cite_note-5" �[5]� and others proposed that the vacuole participates in the destruction of invading � HYPERLINK "https://en.wikipedia.org/wiki/Bacteria" \o "Bacteria" �bacteria� and � HYPERLINK "https://en.wikipedia.org/wiki/Robert_B_Mellor" \o "Robert B Mellor" �Robert B Mellor� proposed organ-specific forms have a role in 'housing' symbiotic bacteria. In protists, vacuoles have the additional function of storing food which has been absorbed by the organism and assisting in the digestive and waste management process for the cell.� HYPERLINK "https://en.wikipedia.org/wiki/Vacuole" \l "cite_note-6" �[6]�





�Functionally, the striatum coordinates multiple aspects of cognition, including motor and action � HYPERLINK "https://en.wikipedia.org/wiki/Planning" \o "Planning" �planning�, � HYPERLINK "https://en.wikipedia.org/wiki/Decision-making" \o "Decision-making" �decision-making�, � HYPERLINK "https://en.wikipedia.org/wiki/Motivation" \o "Motivation" �motivation�, � HYPERLINK "https://en.wikipedia.org/wiki/Reinforcement" \o "Reinforcement" �reinforcement�, and reward perceptio


�This would explain the possibility of a T4 deficiency since the tyrosine and selenium and iodine are part of this nd dopamaine uptake and use


�Does nor imply safe just means not as dangerious or is less hazardous


�The other issues with nano is the integration with other nano partiles which can integrate and alter the initial chemical structure and as a result when falling to the ground or environmental exposure or a mixture of air pollutamts already in the atmosphere engage with biological  and pathological  will also play a roll in the impact of the damage and morphology of the nano with the genetic code or dna of other organic life 


�The reason why this is so is because of the unregulated policy is due to the 1.6 trillion profits and the fact this is a total weaponized tech


�The release of plastic materials into the environment is recognised as an important pollution related issue (� HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib17" �Sutherland et al., 2010� and � HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib18" �UNEP, 2011�). Once in the environment plastics undergo abiotic and biotic weathering processes that cause their degradation and fragmentation into increasingly smaller particles, commonly termed microplastics (MPs; often defined as fragments <5 mm). A number of environmental monitoring studies have quantified the environmental occurrence of MPs in surface waters (� HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib6" �Faure et al., 2015�), coastal sediments (� HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib2" �Browne et al., 2011�), beach sands (� HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib11" �Liebezeit and Dubaish, 2012�), freshwater sediments (� HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib4" �Castañeda et al., 2014�), and deep-sea environments (� HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib20" �Woodall et al., 2014�). MPs are also known to effectively sorb organic pollutants from surrounding water (� HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib12" �Mato et al., 2001�, � HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib5" �Endo et al., 2005� and � HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib19" �Van et al., 2012�). Therefore, internalized MPs might not only lead to direct physical injury, but also to a chemical exposure of the organism through the ingestion of pollutant loaded MPs (� HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib15" �Ryan et al., 1988� and � HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib16" �Saal et al., 2008�).


Recent publications have also suggested that MPs will subsequently degrade into nano-sized plastic particles (see � HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib1" �Andrady, 2011�, � HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib10" �Lambert et al., 2013� and � HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib13" �Mattsson et al., 2015�). The environmental impacts of nanoplastics will be different to those presented by microplastics, because of their smaller size makes tissue penetration and accumulation in organs a possibility (� HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib13" �Mattsson et al., 2015�). This is a potentially important issue given the current concerns regarding the environmental behaviour and ecotoxicity of engineered nano-materials (� HYPERLINK "http://www.sciencedirect.com/science/article/pii/S0045653515304094" \l "bib9" �Lambert et al., 2014�). Therefore, the aim of this work was to test the hypothesis that nanoplastic particles are formed during plastic degradation processes and that the concentrations will increase over time.





�During the first half of the project we successfully developed new molecular-models for two common hydrophobic polymers, namely polypropylene (PP) and polyethylene (PE).{ The sum of propylene glycol and glycol ethers was associated with increased asthma prevalence in preschool-age children} Our models are coarse-grained – that is, they do not include the explicit description of all the atoms of the polymer chains, but describe them as sequences of coarser beads, each one representing a group of atoms. Our coarse-grained models retain some of the chemical specificity of the original polymers, for example their degree of hydrophobicity. The advantage of coarse-graining is to allow for the sampling of much longer length and time scales in molecular simulations.�We are now using our new models to study the interaction of polymer nanoparticles with lipid membranes. We are considering both homogeneous membranes, constituted by a single type of lipid molecules, and laterally heterogeneous membranes, made of a mixture of different lipids. The latter, while posing more challenges from a technical point of view, are more realistic models of plasma membranes, whose lipid composition is extremely rich. Our preliminary results in the homogeneous membranes suggest that both PE and PP penetrate the membrane core. While the PE chains have a strong tendency to aggregation in the membrane core, where they form compact bulges, PP chains have the opposite behavior and dissolve well in the membrane hydrophobic region. In heterogeneous membranes, in presence of two different lipid phases (a properly liquid phase, often referred to as liquid-disordered phase, and a more gel-like phase, known as liquid-ordered) both polymers show the tendency to accumulate at the phase boundaries. While we are still collecting data on these aspects of the nanoplastics-membrane interactions, we can already claim that the polymers induce membrane alterations that could potentially disturb membrane functioning.


�Impact of Endocrine Disrupting NPs on Reproductive Health


Hormones play a key role in influencing the development of the reproductive system and subsequently in controlling its activities once developed. For this reason, most of the research carried out on EDCs in the last two decades has focused its attention on reproductive health. With regard to the male reproductive system, numerous in vitro and in vivo study findings have demonstrated that EDCs can exert a number of detrimental effects such as malformed reproductive tissue, poor semen quality (low sperm counts, low ejaculate volume, high number of abnormal sperm, low number of motile sperm), prostate diseases, testicular cancer, and other recognized abnormalities of male reproductive tissues [� HYPERLINK "http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759935/" \l "b3-ijms-14-16732" �3�,� HYPERLINK "http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759935/" \l "b28-ijms-14-16732" �28�]. There is also evidence that EDCs may interfere with female reproductive development and function causing adverse effects such as fibrocystic disease of the breast, polycystic ovarian syndrome, endometriosis, uterine fibroids and pelvic inflammatory diseases, breast and reproductive organ tissue cancers and declining sex ratio [� HYPERLINK "http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759935/" \l "b3-ijms-14-16732" �3�,� HYPERLINK "http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759935/" \l "b29-ijms-14-16732" �29�].


Recently, the results of studies conducted to assess the potential toxic effects of NPs, have suggested that some of these may pose risks to male and female reproductive health by altering normal testis and ovarian structure, spermatogenesis and sperm quality, oogenesis, follicle maturation and sex hormone levels.





�Limit Of Detection


� GADD45β='Growth Arrest and DNA Damage-inducible'





